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ABSTRACT During his well-known debate with Fisher regarding the phenotypic dataset of Panaxia
dominula, Wright suggested fluctuating selection as a potential explanation for the observed change in
allele frequencies. This model has since been invoked in a number of analyses, with the focus of discussion
centering mainly on random or oscillatory fluctuations of selection intensities. Here, we present a novel
method to consider nonrandom changes in selection intensities using Wright-Fisher approximate Bayesian
(ABC)-based approaches, in order to detect and evaluate a change in selection strength from time-sampled
data. This novel method jointly estimates the position of a change point as well as the strength of both
corresponding selection coefficients (and dominance for diploid cases) from the allele trajectory. The
simulation studies of this method reveal the combinations of parameter ranges and input values that
optimize performance, thus indicating optimal experimental design strategies. We apply this approach to
both the historical dataset of P. dominula in order to shed light on this historical debate, as well as to whole-
genome time-serial data from influenza virus in order to identify sites with changing selection intensities in
response to drug treatment.
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The common assumption of constant selection intensity through time
utilized in many tests of selection is often criticized as unrealistic in
natural and experimental populations, both owing to environmental
changes (e.g., fluctuations in climate, predator density, or nutrient
availability) as well as to genetic changes (e.g., epistasis, clonal interfer-
ence). Despite this, such considerations are not accounted for in most
population genetic models, since inferring changing selection coeffi-
cients (s) from single-time point polymorphism data are difficult.
However, owing to recent technological advances, time-sampled
polymorphism data are increasingly available, and time-serial analytical

methods are expanding (Malaspinas et al. 2012; Mathieson andMcVean
2013; Foll et al. 2014; Lacerda and Seoighe 2014; and see review of Bank
et al. 2014), allowing for an empirical evaluation of the importance of
changing s models.

Fluctuating selection innatural populationswas suggestedbyWright
(1948) with regards to the phenotypic time-serial data of Panaxia
dominula (scarlet tiger moth) to account for its observed annual fluc-
tuations in coloring polymorphism (Fisher and Ford 1947). Since,
there have been several theoretical considerations of fluctuating
selection (Kimura 1954; Karlin and Levikson 1974; Karlin and
Lieberman 1974; Chevin 2013; Gossmann et al. 2014; Gompert
2015), as well as many observations of fluctuating selection in
natural populations (for a review, see Bell 2010). Nonetheless,
until recently, analyses of fluctuating selection centered on ran-
dom or seasonal oscillations of selection strength through time, as
the mathematical complexity of analytical methods only allowed
the simplest cases to be considered.

Approximate Bayesian Computation (ABC) has the advantage of
being flexible in integrating complex models due to computational
efficiency and the lack of likelihood computation (Beaumont 2010).
Recently, a hierarchical ABC-based method based on the Wright-
Fisher model was developed in order to infer genome-wide effective
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population size and per-site selection coefficients from whole-genome
multiple-time point datasets (Foll et al. 2014, 2015). While the initial
approach performs well overall, the authors noted the possibility
for observations inconsistent with a single-sWright-Fisher model;
this was indeed observed at certain sites in their analysis of the
influenza virus genome, which were simply excluded from consid-
eration. Thus, as a natural extension, we here investigate the pres-
ence of changing selection intensities in these outlier single
nucleotide polymorphisms (SNPs); in doing so, we also develop
an extended Wright-Fisher ABC-based method capable of detect-
ing and quantifying changing selection intensities through time
(termed CP-WFABC).

METHODS

Wright-Fisher ABC-based method
This approachfirst relies on a previously developedWright-Fisher ABC
method (WFABC - Foll et al. 2014, 2015) in order to estimate a constant
effective population size (Ne). WFABC infers an effective population
size from time-serial datasets through the average fluctuation of neutral
trajectories over time (followingWright 1948). If whole-genomemulti-
time point datasets are available, the estimated value is referred to as the
genome-wide effective population size. The posterior of the Ne esti-
mated from WFABC is used as a prior for the following extended
method. The trajectory X of a given allele with a known Ne consists
of time-serial allele frequencies ft (t = 1,. . .,T) where T is the total
number of generations (with T . 4 to allow for a change point to be
realizable with the Wright-Fisher model), from which a sample nm is
taken at sampling time points m = 1,. . .,M (withM . 4 to allow for a
change point to be detectable). Parameters to be inferred include the
selection coefficient prior to the change in selection intensity (s1), the
selection coefficient subsequent to the change in selection intensity (s2),
the change point in selection (CP), and the dominance coefficient (h)
for diploid models. The joint posterior distribution of these parameters
can be estimated by

Pðs1; s2;CP; hjXÞ} PðXjs1; s2;CP; hÞPðs1ÞPðs2ÞPðCPÞPðhÞ; ð1Þ

Pðs1; s2;CPjXÞ}PðXjs1; s2;CPÞPðs1ÞPðs2ÞPðCPÞ ð2Þ
for the diploid model and the haploid model, respectively. The ABC
approach allows these parameters to be inferred using Wright-Fisher
model simulationswithout calculating the likelihoodPðXjs1; s2;CP; hÞ
or PðXjs1; s2;CPÞ.

TheWright-Fishermodel simulator with a change point in selection
strength is used to simulate the dataX, with relativefitnesseswAA= 1+ s,
wAa = 1 + sh andwaa = 1 for the diploidmodel, andwA = 1 + s andwa =
1 for the haploidmodel (Ewens 2004). Initially, the random sampling of
an allele from generation 1 to generationCP-1 is simulated using s1, and
onwards from the change point (CP) using s2. In order to simulate
realistic allele trajectories with changing selection coefficients,
the allele needs to be segregating at the time of the change point.
This condition is necessary since the change in selection coefficient
cannot occur if the allele is either lost or fixed beforehand, assum-
ing the infinite-site model with no back mutations. Thus, only
alleles segregating at the change point are accepted as simulated
datasets.

The associated summary statistic for these time-serial data are Fs’, an
unbiased estimator of Ne based on the allele frequency change between
two sampling time points that remains unbiased even in the presence of
highly skewed allele frequencies and small sample size (Jorde and

Ryman 2007), an important property for inferring change points along
the allele trajectory. It is given as:

Fs ¼ ð fm2fmþ1Þ2
fið12 fiÞ ð3Þ

Fs9 ¼ 1
ti
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where fm and fm+1 are the allele frequencies at two consecutive sam-
pling time points, m and m+1 (separated by ti generations), fi = (fm +
fm+1) / 2, and ~n is the harmonic mean of the chromosome sample sizes
nm and nm+1 at two consecutive time points. Unlike the WFABC
approach that summarizes time-serial trajectories into only two sum-
mary statistics (increasing and decreasing Fs’; Foll et al. 2014), here Fs’
is summarized at every pair of consecutive time points as Fs’i with i =
1,. . .,M21, where M is the number of sampling time points. This
modification allows additional information, such as the timing of
increase or decrease in allele frequency, to be captured. In order to
retain information about directionality that is lost by using Fs’ as a
summary statistic in the original WFABC approach, increasing allele
frequencies are made positive and decreasing allele frequencies are
made negative with regards to the absolute value.

The joint posterior distribution of the parameters of interest is
obtained using the algorithm described in Beaumont et al. (2002).
The approximate posterior density

P
�
ujUðXÞ

�
� PðujXÞ (5)

with U(X) as data-specific summary statistics, u = (s1, s2, CP, h) for the
diploid model and u = (s1, s2, CP) for the haploid model, is obtained
using an ABC algorithm as follows:

i. Simulate K trajectories from the Wright-Fisher model with a
change in selection intensity, with u randomly sampled from
its prior P(u), conditional on the allele segregating at the change
point.

ii. Compute U(xk) for each trajectory using the Fs’i summary statistic
between all consecutive sampling time points i: U(xk,i) where
i = 1,. . .,M21 where M is the last sampling time point.

iii. Retain the 1000 best simulations with the smallest Euclidian
distance between U(xk,i) (from the simulated) and U(Xi) (from
the observed) to obtain an approximate posterior density of
P(u|X).

For the first step, simulations are performed with the same initial
conditions as the observed data, including effective population size,
initial allele frequency, and the sampling points and sizes. In addition,
a minimum allele frequency in one of the sampling time points is
imposed on simulated trajectories as is done in observed data. This
ascertainment scheme takes into account the nonrandom criterion of
considering only the trajectories reaching values above the sequencing
error threshold in the observed data (Foll et al. 2015).

For the second step, it is important to note that the Fs’ summary
statistic is calculated between every pair of consecutive sampling time
points (Figure 1). This construction of the summary statistic enables
information on both the timing and strength of the allele frequency
change to be captured, as the timing of the change is essential in
detecting the change point and the strength of the change is essential
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in estimating the corresponding selection coefficients. For the diploid
model, an additional parameter h is inferred jointly with the other three
parameters, as its value is one of the determining factors in the timing of
allele frequency change (Haldane 1932).

For the third step, the simulated Fs’ summary statistics U(xk,i) be-
tween every pair of consecutive sampling time points are compared
with the corresponding observed Fs’ summary statistics U(Xi) – allowing
a small fraction of the simulated trajectories with allele frequency
changes that best match the observed trajectory (in terms of both timing
and strength) to be retained.

Wright-Fisher ABC-based method with change
point analysis
In order to increase computational efficiency and sensitivity in change
point detection, an additional summary statistic is integrated into
theWright-FisherABC-basedmethod. This novel summary statistic
is derived from change point analysis – statistical techniques

developed and used in many disciplines ranging from finance to
quality control in order to detect and estimate change (e.g., Chen
and Gupta 2001). Among the techniques available, the cumulative
sum control chart (CUSUM) developed by Page (1954) is able to
detect small and sustained shifts in the statistics b obtained from a
sample (Ryan 2011). Instead of using the entire CUSUM procedure
as a separate method for detecting change, the CUSUM value is
integrated into the Wright-Fisher ABC-based method as an addi-
tional summary statistic that characterizes the time-sampled trajec-
tory of an allele:

Si ¼ Si2 1 þ
�
bi 2 �b

	
; i ¼ 1; . . . ;M2 1 (6)

where �b ¼ mean and S0 ¼ 0. The CUSUM value S is accumulated
only when the statistic b is different from its average value in the
dataset.

The change point SCP is the sampling time point with the maximal
absolute value of Si, which is the furthest point from the initial value

Figure 1 Illustration of Fs’ calcu-
lated between every pair of con-
secutive sampling time points
with 10 generations and the max-
imal CUSUM (cumulative sum
control chart) value SCP as sum-
mary statistics, using a haploid
population of Ne = 1000 with a
de novomutation and the sample
size as 100. (A) Allele frequency
trajectory (B) Fs’ values along
the trajectory (C) CUSUM values
along the trajectory
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zero attaining themaximal accumulation of difference from the average
value:

SCP ¼ arg max
i¼0;...;I

jSij: (7)

Here, we take Fs’ at each pair of consecutive sampling time points as
the statistic b, since it is a time-serial measure of the allele frequency
change, which is indicative of the selection strength change. Thus,
when Fs’ is used as the statistic b in the CUSUM, the maximal
CUSUM value SCP is the potential change point of the allele trajectory,
as illustrated with an example in Figure 1.

In the change point Wright-Fisher ABC (CP-WFABC), an addi-
tional summary statistic SCP is used to characterize observed and sim-
ulated allele frequency trajectories for detecting a change point. In the
third step of the ABC algorithm, the Euclidean distance between U(xk,i)
and U(Xi) is calculated only if the maximal CUSUM value SCP,k of the
simulated datamatches themaximal CUSUMvalue SCP of the observed
data:

D ¼

��UðXiÞ-U

�
xk;i

	��; if   SCP ¼ SCP;k
N; otherwise:

(8)

This additional step allows the computation to be more efficient –
especially when there is a large number of time points sampled – as
the Euclidean distance is calculated for a fraction of simulated trajec-
tories whose maximal CUSUM value is equal to that of the observed
(i.e., with the same time-sampled characteristic). Furthermore, as the
CUSUM is sensitive to small and sustained changes, integrating the
CUSUM into the Wright-Fisher ABC method increases its sensitivity
for detecting small and sustained changes in selection strength. The
potential bias in the calculation of the maximal CUSUM value is
counteracted by the fact that the bias would be present in both the
observed and the simulated trajectories.

Simulated data with constant selection and with
changing selection
We generated simulated datasets of different effective population sizes
using the Wright-Fisher model for two scenarios: (1) trajectories of
constant selection with only s and h (for diploid models) as parameters,
and (2) trajectories of changing selection with s1, s2, CP, and h (for
diploid models) as parameters. For selection coefficients, uniform pri-
ors of (21, 1) were used. The uniform prior of CP was set to occur
between the second generation and the second-to-last generation (2,
T21), where T is the number of generations of the population in the
time-serial data. The dominance coefficient h for the diploid model was
randomly drawn from one of three values: complete recessiveness,
codominance, or complete dominance [0, 0.5, 1]. Although these prior
ranges are uninformative, the constraint on the trajectories to be seg-
regating at the change point shapes the distribution of the prior ranges
according to the input parameters such as ploidy, effective population
size, initial allele frequency, and number of generations; the updated
priors for the haploid population of Ne = 100 and the diploid popula-
tion of Ne = 50 are shown as examples (Supplemental Material, Figure
S1 and Figure S2).

The other input values – such as the number of generations (T =
100), the sampling time points (M = 10), the sample size (n = 100), the
initial allele arising as a new mutation, and the ascertainment of ob-
serving a minimum frequency at 2% – were kept constant for the two
scenarios. We retained the best 0.1% of 1,000,000 simulations for each
pseudoobservable trajectory using the rejection algorithm based on the
Euclidean distance as described above. The mode of the posterior dis-
tribution from the best simulations (Sunnåker et al. 2013) was used to
evaluate the estimated parameter value against the true parameter
value.

Data availability
The R package of CP-WFABC is available on jensenlab.epfl.ch.

Figure 2 16. ROC (Receiver operating characteristic) curve of the Bayes factor B1,0 from the ABC (approximate Bayesian computation) model
choice (A) a haploid population with Ne = 100, and (B) a diploid population with Ne = 500.
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RESULTS

Model choice in the change point Wright-Fisher
ABC method
The first step of CP-WFABC is to be able to distinguish changing
selection trajectories from constant selection trajectories. ABC model
choice was constructed to choose between twomodels: M0 with a single
selection coefficient, and M1 with two selection coefficients and a
change point. The relative probability of M1 over M0 can be computed
through the model posterior ratio as the Bayes factor B1,0 (Sunnåker
et al. 2013):

pðM1jDÞ
pðM0jDÞ ¼

pðDjM1ÞpðM1Þ
pðDjM0ÞpðM0Þ ¼ B1;0

pðM1Þ
pðM0Þ ð9Þ

when the model prior p(M0) is equal to p(M1). In practice, the model
priors are made equal by producing the same number of simulations
for each model and retaining the best simulations from the lot. The
posterior ratio is computed as the number of accepted simulations
from M1 over those of M0, giving the Bayes factor B1,0,which is an
indicator of the support for a specific model. The performance study
was conducted with a haploid population of Ne = (100, 1000, or
10,000) and a diploid population with Ne = (50, 500, or 5000) using
the simulated datasets of the two scenarios described in the previous
section as M0 and M1, respectively.

We considered two cases for the pseudoobservables to test the
sensitivity and specificity of the ABC model choice: the first case when
the pseudoobserved trajectories have a single selection coefficient, and
the second case when they have changing selection coefficients. One
thousand pseudoobservable trajectories were generated for each case
with the data ascertainment minimum frequency set to 2% for at least
one of the sampling time points. Additionally, for the second case,
pseudoobservable trajectories were accepted only when the allele was
segregating at the time of the change point – a constraint for realistic
combinations of selection coefficients, change points, and dominance
(for diploids) – in order to reproduce changing selection trajectories in
real datasets. All other input values were kept constant as in the sim-
ulated datasets described in the previous section.

The results of theABCmodel choice from a haploid populationwith
Ne = 100, and a diploid population with Ne = 500, are represented as
ROC curves (Xavier et al. 2011) in Figure 2. Specificity is given on the
x-axis showing the true negative rate, while sensitivity is given on the
y-axis showing the true positive rate of the Bayes factor B1,0 calculated
from 1000 pseudoobservables of changing selection (where B1,0 should
be large) and 1000 pseudoobservables of constant selection (where B1,0
should be small). The overall ROC curves in black (all trajectories)
show that when the specificity threshold is most conservative in
detecting no false positives (i.e., B1,0 = infinite), the Bayes factor
B1,0 has a sensitivity of �30% for all populations. Considering that

the pseudoobservable trajectories were simulated randomly from a
wide range of prior values, the Bayes factor B1,0 from CP-WFABC is,
in general, sensitive and specific. The ROC curves in black for the
other haploid and diploid populations (Figure S3) also indicate that
the Bayes factor B1,0 is sensitive and specific as they are above the
diagonal line of no-discrimination. The area under the ROC curve
(AUC) is used to assess how reflective the Bayes factor B1,0 is of the
true model, as summarized for all pseudoobservable populations in
Table 1. The AUC values show that the Bayes factor B1,0 is �80%
more probable to rank a randomly chosen changing selection case
above a randomly chosen constant selection case. Additionally, the
distribution of Bayes factors B1,0 under the null model M0 (i.e., case 1)
was used to compute the significance level a at 1% (Good 1992). For
both diploids and haploids, the significance threshold is higher for
smaller population sizes (Table 2), and the calculation of these thresh-
olds will be important in any given data application.

Following the detection of changing selection trajectories usingABC
model choice, the quality of parameter estimation by the model chosen
was evaluated. The cross-validation results from the haploid population
of Ne = 100 are shown in Figure 3 and those from the diploid popula-
tion of Ne = 500 in Figure 4 (see Figure S4, Figure S5, Figure S6, and
Figure S7 for additional results). For the case where the pseudoobserv-
ables were of constant selection, the estimation for a single s (and the
dominance h for diploid) using CP-WFABC is very accurate, as the
mode of the best simulations from the M0 model for each pseudoob-
servable lies along the red diagonal line. Exceptions include uninfor-
mative trajectories where the allele surpasses the minimum frequency
of 2% in the first sampling and is lost immediately due to genetic drift or
negative selection and therefore not observed in subsequent samplings.
Such uninformative trajectories will always keep the same set of best
simulations from the M0 model since their selection strength is indis-
tinguishable, and they result in horizontal lines along the estimated
negative value. This phenomenon is particularly pronounced when
population size is small as shown in Figure 3 and Figure S6, since the
role of genetic drift is more significant.

For the second case, when the pseudoobservables are of changing
selection intensity, the joint estimation of the parameters is also effective
for a restricted range of values. InFigure 3, Figure 4, Figure S4, Figure S5,
Figure S6, and Figure S7, the mode estimation of each pseudoobserv-
able is color-coded according to the three categories of trajectory shape.
The green dots are pseudoobservable trajectories that change from
positive s1 to positive s2. The blue dots are those that change from
positive s1 to negative s2, while the magenta colors include all other
cases (e.g., neutral or negative s1 to any value of s2). There is a clear
clustering by category –with the best estimation being of positive values
of s1 below 0.5, moderate values of s2 between 20.5 and 0.5, and CP
values for the blue category of positive s1 to negative s2. In trajectories
other than those with positive s1 to negative s2, the change point is

n Table 1 AUC values and confidence intervals for ROC curves

ROC (Receiver operating characteristic) curves

100 1000 10000
AUC 0.7936 0.7988 0.7943
CI 0.7756–0.8124 0.7797–0.8181 0.7750–0.8140

ROC curves for haploid populations

50 500 5000
AUC 0.8233 0.7378 0.7470
CI 0.8051–0.8402 0.7164–0.7593 0.7257–0.7683

ROC, ; AUC, area under the ROC curve; CI, confidence interval.

n Table 2 The Bayes factor (BF) thresholds for the significance
level a of 1% computed using the distribution of Bayes factors
under the null model M0

Diploid populations

50 500 5000
BF 4.7 1.6 1.3

Haploid populations

100 1000 10000
BF 3.7 3.2 1.7
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difficult to detect, particularly for diploid populations where the addi-
tional dominance parameter h was estimated (Figure 4, Figure S6, and
Figure S7). This trend is also observed when the ROC curves are gen-
erated according to these three categories (Figure 2 and Figure S3). For
all populations, the Bayes factor B1,0 is more sensitive and specific for
trajectories changing from positive s1 to negative s2 (ROC curves in
blue), reaching above 60% of the true positive rate when there are no
false positives. Despite the restricted range of good parameter estima-
tion in s1, s2, and CP, the estimation of dominance is robust for both
cases of constant and changing selection (except for the small popula-
tion size of Ne = 50; Figure S6).

In order to evaluate the performance of the joint parameter estima-
tion, the coefficient of determination R2 is used to assess the cross-

validation between the estimated values (ym) and the true values
( fm), compared with the simple average of the estimated values (�y).
The closer the R2 value is to 1, the better the parameter estimation as
shown:

R2 [ 12

P
mðym 2 fmÞ2P
mðym 2�yÞ2 ð10Þ

Table 3 and Table 4 summarize the performance of the joint param-
eter estimation for all cases as the R2 values for the haploid and diploid
populations, respectively. The first case is when the pseudoobserv-
ables are of constant selection intensity, in which case the true model
(M0) performs only slightly better than the false model (M1) for

Figure 3 ABC (approximate Bayesian computation) model choice parameter estimations for 1000 pseudoobservables with a haploid population
of Ne = 100. Each circle is the mode of the posterior distribution from the 0.1% best simulations. Case 1: Pseudoobservables with constant
selection (A) M0 estimates of s. Case 2: Pseudoobservables with changing selection (B) M1 estimates of s1, (C) M1 estimates of s2, and (D) M1

estimates of CP (green: positive s1 to positive s2, blue: positive s1 to negative s2, magenta: other cases)
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estimating s. This discrepancy in parameter estimation of M0 is
mainly owing to uninformative pseudoobservable trajectories with
constant selection (which have been lost or fixed) being associated
with the true model (M0) of constant selection; this is due to
the constraint for the allele to be segregating at the change point in
the (false) model M1 of changing selection. In the cross-validation
of the constant selection case, the parameters estimated form horizontal
lines at negative estimated values for those trajectories that are lost, and
cluster at the top right corner for those trajectories that are fixed (Figure
3, Figure 4, Figure S4, Figure S5, Figure S6, and Figure S7).

For the second case in which the pseudoobservables have changing
selection coefficients, parameter estimation from the true model (M1)
performs better than that from the falsemodel (M0) for all parameters –
particularly when population sizes are large. As expected, there is a
trend of better parameter estimation as population size increases
(though see Figure S4 and Figure S5). Additionally, it has been shown
that the value of the Bayes factor B1,0 is a good indicator of the param-
eter estimation performance (results not shown).

DATA APPLICATION

Historical dataset of P. dominula
A long-running dataset based on themedionigramorph responsible for
darker wing color in wild populations of P. dominula (Figure S8) began
in 1939 with collections by Fisher and Ford (1947) and continued

through to 1999 (Cook and Jones 1996; Jones 2000). Despite this phe-
notypic time-serial data having been analyzed previously from various
angles (O’Hara 2005; Mathieson and McVean 2013; Foll et al. 2015), it
is still relevant to consider a model of changing selection in time, as
Wright (1948) originally suggested.

The recent reconsiderations of the dataset tend to favor a lethal-
recessivemodelwith an effectivepopulation ofNe=500 (Mathieson and
McVean 2013; Foll et al. 2015) – however, the biological question of
how themedionigramorph could have reached the initial frequency of
11% in the dataset remains unanswered with this conclusion of con-
stant strong negative selection.Wright asserted that the trajectory of the
medionigramorph during this period could be explained by fluctuating
selection with “no net selective advantage or disadvantage.” Although
this alternative hypothesis has been considered as a random fluctuation
of selection by estimating selection coefficients between every sampling
time point (see O’Hara 2005), the quantitative plausibility of a direc-
tional change-in-smodel over a single-smodel lacks thorough investi-
gation. Thus, we reanalyzed this dataset using the CP-WFABCmethod
in order to investigate the possibility of changing selection in themedio-
nigra morph during the 60-yr data collection.

Using theABCmodel choice introducedhere as a test for a change in
selection strength, and to estimate the parameters of interest for the
chosen model, we assume the medionigra allele is a single codominant
locus responsible for the homozygous and heterozygous expressions of
the phenotypic forms bimacula andmedionigra, respectively (Cook and

Figure 4 ABC (approximate Bayesian computation) model choice parameter estimations for 1000 pseudoobservables with a diploid population
of Ne = 500. For cross-validation graphs, each circle is the mode of the posterior distribution from the 0.1% best simulations. For boxplots, red
dots are true values and blue dots are average estimated values. Case 1: pseudoobservables with constant selection (A) M0 estimates of s and (B)
M0 estimates of h. Case 2: pseudoobservables with changing selection (C) M1 estimates of s1, (D) M1 estimates of s2, (E) M1 estimates of CP, and
(F) M1 estimates of h (green: positive s1 to positive s2, blue: positive s1 to negative s2, magenta: other cases)
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Jones 1996). The model M0 assumes a single selection coefficient, thus
the only parameter to estimate is s. The M1 model assumes a change in
selection strength, thus the parameters of interest are s1, s2, and CP.
Both M0 and M1 take the prior range of (21, 1) for the selection
coefficients and the prior range of (2, 59) for the change point in the
M1 model. For the M1 model, these uninformative priors are updated
with the constraint that the allele must be segregating at the time of
change point. Here, we create 107 simulated datasets for each M0 and
M1, and apply the rejection algorithm of the CP-WFABC method to
retain the best 1000 simulations comparedwith the observed trajectory.
The effective population size is assumed to be Ne = 500 as in previous
studies (Wright 1948; Cook and Jones 1996; O’Hara 2005), with an
initial allele frequency of 11% and aminimum frequency ascertainment
of 2%.

The Bayes factor for M1 over M0 is calculated as 0.952, indicating
that the single coefficient M0 model cannot be rejected in favor of the
changing selectionM1model (Table 4). From the parameter estimation
of themodelM0 (Figure S9), themode of the posterior distribution for s
is given as20.15 as asserted by Fisher and Ford (1947).When the ABC
model choice was repeated with a smaller population size of Ne = 50 as
suggested by Wright (1948) and O’Hara (2005), the Bayes factor in-
creases to 1.87 (i.e., the changing selectionmodel is twice as likely as the
constant selection) – however, this value is not large enough to be
significant for a diploid population of Ne = 50 (Table 4).

Experimental evolution of influenza virus with
drug treatment
The evolution of pathogens within a host is one of the most important
cases in which the possibility of fluctuating selection must be considered –
as they may experience drastically changing selective pressures due to
host immune response, specific drug treatments, and/or pathogenic
cooperation or competition (Tanaka and Valckenborgh 2011; Hall
et al. 2011). Thus, how these pathogens adapt to these rapid external
and internal changes is of major concern to the biomedical community.

The time-serial experimental dataset of influenza A conducted by
Renzette et al. (2014) and Foll et al. (2014) is an interesting case study
on the impact of drug treatment on influenza virus evolution. The
dataset consists of 13 sampling points from which population-level
whole-genome data were collected. Drug treatment with a commonly
used neuraminidase inhibitor (oseltamivir) began after the collection of
the third sample and continued, at increasing concentrations, until the
final passage. Using WFABC, the genome-wide effective population

size across the sampling time points was estimated (Ne = 176) and
the SNPs under selection were identified.

Here,weapply theCP-WFABCmethodon twocasesof interest from
this study to consider a possible change in selection strength under drug
treatment: thefirst case includes trajectories identifiedasbeingdrivenby
positive selection, while the second includes outlier trajectories (i.e.,
trajectories not fitting a single s Wright-Fisher model). For all cases,
we test the model M0 (i.e., a single selection coefficient) and M1 (i.e., a
changing selection coefficient), with parameters of interest (s) and (s1,
s2,CP), respectively. The number of generations per passage is assumed
to be 13 (following Foll et al. 2014), and the minimum frequency of 2%
is set as an ascertainment for observing the minor allele in the data. De
novomutations are assumed to occur at the sampling time point where
the SNP was first sampled (except for trajectories whose initial sample
frequency was first sampled above 1/Ne, which are assumed to be
standing variation). This assumption is based on the high mutation
rate, large population bottlenecks associated with passaging, and large
census population size between passages. A total of 107 datasets were
simulated for each M0 and M1; the best 1000 trajectories from the lot
were retained using the rejection algorithm described in the Methods
section. The uniform prior ranges for the selection coefficients were set
as (21, 1), for the change point as (t0, 157) where t0 is the generation
when the SNP was first sampled, and with the constraint of segregating
alleles at the change point for M1.

The results for the Bayes factors and the parameter estimates are
summarized in Table 5 for all trajectories of interest. The Bayes factors
of most trajectories show strong support for the changing selection
model: the stronger the selection strength change, the larger the Bayes
factor. Using the Bayes factors from the simulation studies as guidance
(Table 4), the significance threshold to reject M0 is computed as 3.7 for
a small haploid population. As expected, the trajectories identified as
outliers of the single sWright-Fisher model (NP 159, PB1 33) all reject
the constant selection model M0 with a large Bayes factor. We also note
that the Bayes factor for the drug-resistant mutation H275Y (NA 823)
does not support the changing selection model strongly, confirming
that the experimental evolution procedure kept the selective pressure of
the drug constant by adjusting the drug concentration to reduce viral
plaque numbers to 50% at each passage. As shown in Figure 5, the

n Table 3 R2 values of the parameter estimation with the ABC
(approximate Bayesian computation) model choice for haploid
populations

Case 1: 1000 constant selection pseudoobservables

M0 (True) 100 1000 10,000
s 0.558 0.843 0.914

M1 (False) 100 1000 10,000
s 1 0.366 0.769 0.834
s 2 0.608 0.752 0.685
CP 216 25.97 22.27

Case 2: 1000 changing selection pseudoobservables

M0 (False) 100 1000 10000
s 20.278 20.00232 20.00205

M1 (True) 100 1000 10,000
s 1 20.323 0.363 0.415
s 2 0.704 0.768 0.777
CP 0.0946 0.413 0.303

n Table 4 R2 values of the parameter estimation with the ABC
(approximate Bayesian computation) model choice for diploid
populations

Case 1: 1000 constant selection pseudoobservables

M0 (True) 50 500 5000
s 20.13 0.55 0.796
h 20.789 0.653 0.88

M1 (False) 50 500 5000
s 1 20.194 0.363 0.746
s 2 0.491 0.57 0.609
h 0.195 0.764 0.857
CP 210.8 21.65 21.37

Case 2: 1000 changing selection pseudoobservables

M0 (False) 50 500 5000
s 20.441 0.0955 0.118
h 20.119 0.525 0.573

M1 (True) 50 500 5000
s 1 20.713 0.181 0.277
s 2 0.467 0.536 0.463
h 0.219 0.611 0.678
CP 20.145 20.258 20.125
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change points are estimated to be mostly between the seventh and
eighth passages, a notable result since three of these trajectories (HA
48, HA 1395, NA 582) are increasing rapidly after the drug-resistant
mutation H275Y appears, whereas one trajectory (NP 159) from a
different segment decreases rapidly. This result may indicate that pos-
itive selective for the three SNPs (including HA 1395; a known com-
pensatory mutation encoded also as D112N) increased along with the
drug-resistant mutation H275Y, potentially due to epistatic interac-
tions, whereas another SNP (NP 159) decreased at that time, potentially
owing to clonal interference. The single selection estimates from
WFABC (Foll et al. 2015) are similar to the estimates of CP-WFABC
only when the Bayes factor does not rejectM0 – strong evidence that an
alternative model of changing selection must be considered for some
trajectories in order to correctly estimate selection coefficients.

We also applied CP-WFABC to the control case of SNPs increasing
in frequency without drug as a comparison to the case with drug. The
effectivepopulationsizesof theviralpopulationswereaveragedtobe226
in the absence of drug from the previous study (Foll et al. 2014). All of
the other inputs and the ABC model choice conditions were kept the
same as in the drug case. The Bayes factor results summarized in Table
5 demonstrate that none of the SNP trajectories under selection in the
control experiment can reject M0 (i.e., constant selection).

DISCUSSION
These simulations demonstrate that the novel CP-WFABC approach
presented here is able to detect changing selection trajectories via ABC
model choice, andalso to estimate awide range of parameters of interest.
Performance was analyzed separately for three categories of allele
trajectories according to the nature of the change in selection strength:
(1) a change from positive s1 to positive s2, (2) a change from positive s1
to negative s2, and (3) all other changes. The datasets for each possible
combination were generated using the Wright-Fisher model with a
change in selection strength, using the most general prior ranges for
all parameters s1, s2, CP, and h for diploids, with the only constraint
being segregation of the allele at the change point. For both the de-
tection and parameter estimation, CP-WFABC performs best when
the change is large, particularly for the second category of change
(positive s1 to negative s2), as shown in the ROC curves (Figure 2
and Figure S3) and the cross-validation graphs (Figure 3, Figure 4,
Figure S4, Figure S5, Figure S6, and Figure S7). For the first

category (positive s1 to positive s2) and the third category (any other
changes), the change point is difficult to estimate, particularly for
diploids where the additional parameter h is also estimated. The
ABC model choice of CP-WFABC has the best sensitivity for full
specificity, for larger population sizes (Ne . 500 for diploids), and
for haploid populations.

The parameter estimates of s1 and s2 perform best when the values
are moderate – given as the intervals (0, 0.5) and (20.5, 0.5) respec-
tively. For s1, the optimal parameter range for estimation is (0, 0.5),
where a de novo mutation that survives negative selection and segre-
gates until the change point is indistinguishable from other drifting
mutations with similar trajectories with uninformative low allele fre-
quency. These trajectories naturally arise more frequently when pop-
ulation size is small and in diploids where the dominance effect plays a
role, as shown in the third category of change (Figure 3, Figure 4, Figure
S4, Figure S5, Figure S6, and Figure S7; magenta points). When an
initial frequency of 10% is used instead of a de novo mutation, the
advantage of having a more informative trajectory at the beginning is
counteracted by the effect of more cases dominated by negative se-
lection or genetic drift segregating until the change point. Thus, the
performance of CP-WFABC for standing variation is similar to that
of de novo mutation. For s2, the optimal parameter range for estima-
tion is (20.5, 0.5), as trajectories with extreme values are less infor-
mative since they are lost or fixed directly after the change point
(explaining the clustering of the change points at earlier times). For
diploid populations, estimates of h are accurate to the level of de-
termining dominance from codominance or recessiveness, particu-
larly for large population sizes (Figure S7), given the difficulty of joint
estimation with the three other parameters. Indeed, estimation of this
additional parameter comes at the cost of worse performance for the
other parameters, as can be seen in the ROC curves and cross-vali-
dation graphs: the detection and parameter estimation of changing
selection cases is always better for haploids. Thus, in diploid cases, we
recommend fixing the dominance parameter if known, in order to
improve the performance of CP-WFABC.

Although CP-WFABC is intended to detect and evaluate changing
selection intensities, the simulation studiesdemonstrate that themethod
also performs well in estimating parameters for cases of constant
selection (as has been demonstrated by Foll et al. 2014). For haploids
with large population sizes, in particular, the estimated values of the

n Table 5 Bayes factors and parameters estimated for the influenza trajectories in the presence and absence of drug

Segment Position Bayes Factor (M1/M0) M0 s estimate M1 s1 estimate M1 s2 estimate M1 CP estimate WFABC s estimate

Trajectories under selection with drug
PAa 2194 N — 0.251 20.328 24 (p1–2) 0.09
HAb 48 42.5 0.11 0.031 0.309 102(p7–8) 0.14
HAb 1395 5.5 0.142 0.088 0.188 104 (p7–8) 0.22
NAb 582 999 0.127 0.019 0.41 102 (p7–8) 0.29
NAb 823 1.8 0.114 0.103 0.139 105 (p8–9) 0.15
Ma 147 2.7 0.056 0.042 0.089 116 (p8–9) 0.08
NSb 820 1.7 0.037 0.029 0.05 146 (p11–12) 0.12

Outlier trajectories with drug
NPb 159 8.09 0.011 0.027 20.054 103 (p7–8) 0
PB1b 33 16.2 0.047 0.023 0.256 113 (p8–9) 0.14

Trajectories under selection without drug
PB1a 1119 0.57 0.044 0.038 0.047 60 (p4–5) 0.06
HAb 1395 2.38 0.097 0.083 0.131 106 (p8–9) 0.12
NPa 1104 1.72 0.047 0.042 0.062 110 (p8–9) 0.05
NPb 1396 0.89 0.049 0.049 0.053 49 (p3–4) 0.09

The estimates whose Bayes factors show strong support for M1 are in bold.
a

Standing variation.
b

A de novo mutation.
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single parameter s correlate almost perfectly with the true values (Figure
S5). However, when the population size is small for both diploids and
haploids, some trajectories that are lost by genetic drift are difficult to
estimate, as shown in Figure 3 and Figure S6 as horizontal lines along
negative estimated values. This limitation of constant selection coeffi-
cients, however, is due to the simulation conditions of the de novo
mutation at the first generation and the minimal ascertainment scheme
(minimum frequency of 2% at one of the sampling time points). For
real datasets, the conditions are likely to be less stringent, since such
uninformative trajectories will not be considered for parameter
estimation.

Finally, we utilized this approach to make inference in two very
different time-sampled datasets: P. dominula (diploid) and Influenza A
virus (haploid). The time-serial medionigra trajectory of P. dominula
was reanalyzed to test for a change in selection strength and/or di-
rection during 60 yr of data collection. By assuming h as codominant,

the results forNe = 500 indicate that themodel M0 of constant selection
cannot be rejected according to the Bayes factor from the ABC model
choice algorithm. The selection coefficient from this model is estimated
as 20.15, corresponding with that calculated by Fisher and Ford
(1947). However, when the population size is assumed to be smaller
(Ne = 50), the Bayes factor result supports M1 (changing selection)
twice as strongly as M0 (constant selection), but not strong enough
to reject M0 according to the significance level test computed with
the distribution of Bayes factors under the null model M0. This dataset
of the medionigra morph thus demonstrates the difficulty of detecting
and evaluating a change in selection when the assumption of a known
and constant effective population size is not fulfilled. Depending on the
assumed population sizes, the conclusions may indeed change, as this
study demonstrates. Furthermore, if the population size fluctuates, this
method has the caveat of detecting a change in Ne

�s rather than only in
selection strength.

Figure 5 Change points indicated
with solid stars for the trajectories of
interest. (A) Increasing SNP trajectories
in the presence of drug. The red
vertical line indicates the sampling
time of drug administration. (B) Increas-
ing SNP trajectories in the absence of
drug.
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Next,CP-WFABCwasapplied toSNPtrajectoriesof interest froman
experimental dataset of influenza A virus. The ABC model choice test
was conducted on the trajectories identified as 1) being positively
selected and 2) as outliers from the single-s WFABC method. For the
SNPs in the presence of drug, the Bayes factor for six out of nine
trajectories favored the changing selection model M1. As shown in
Figure 5, the change points for four out of these six trajectories occurred
between passages seven and eight – the interval during which three
trajectories from theHemagglutinin andNeuraminidase segments (HA
and NA, respectively) increased rapidly while one trajectory from the
segment NP decreased rapidly along with the known drug-resistant
mutation NA 823 (H275Y). These results appear to support the pres-
ence of epistasis and/or clonal interference, where the selection strength
of the other SNPs is influenced by the appearance of a drug-resistant
mutation under drug pressure. In fact, a known compensatory muta-
tion HA 1395 (D112N) for infectivity (Thoennes et al. 2008) was
among the three trajectories increasing rapidly, further confirming that
increased infectivity might contribute to tissue culture adaptation, thus
reinforcing the use of the method to evaluate biological hypotheses.
Moreover, the estimated values of selection coefficients differed greatly
between the constant-selectionmethod (WFABC) and CP-WFABC. In
particular, the estimates of s for PA 2194 and NP 159 from theWright-
Fishermodel were inferred byWFABC as being near zero (i.e., neutral),
though the more robust CP-WFABC estimates here indicate fluctua-
tion of s from negative to positive values. Thus, these fluctuations
cannot be explained by genetic drift alone, as previously speculated.
We have therefore identified some cases where an alternative model of
changing selection is essential for correctly estimating selection param-
eters and identifying change points. In the absence of drug treatment,
the Bayes factor test could not reject the constant selection model M0

for any of the identified SNPs suggesting that in, the absence of the
drug, the selective pressures on the population are largely constant as
expected.

The simulation studies of changing selection reveal some important
points to consider from the standpoint of experimental design. For CP-
WFABC, the parameter estimation of a single selection coefficient
between two sampling time points performs reasonably well for haploid
population sizes aboveNe = 1000. However, it is advisable to have three
sampling time points to enhance the parameter estimation by maxi-
mizing the information contained in the allele trajectory for both se-
lection periods, particularly for diploids and in smaller population sizes
(Ne, 1000). Thus, in order for a change to be detectable, it is required
to have at least four sampling time points where the change must occur
between the second and third sampling time points. The simulation
studies of CP-WFABC confirm that the estimation ofCP performs best
at the intermediate range of time-sampled data, as any change happen-
ing before the second and after the second-to-last sampling time point
is impossible to detect (Figure 3, Figure 4, Figure S4, Figure S5, Figure
S6, and Figure S7). Finally, it remains a future challenge to expand this
method to consider more than one change point in selection strength,
as some of the trajectories in the influenza A application (such as PA
2194 and PB1 33) suggest the presence of several change points along
the trajectory, and to resolve the problem arising from the assumption
of constant population size.
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