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ABSTRACT Genotyping-by-sequencing (GBS), and related methods, are based on high-throughput short-
read sequencing of genomic complexity reductions followed by discovery of single nucleotide polymor-
phisms (SNPs) within sequence tags. This provides a powerful and economical approach to whole-genome
genotyping, facilitating applications in genomics, diversity analysis, and molecular breeding. However, due
to the complexity of analyzing large data sets, applications of GBS may require substantial time, expertise,
and computational resources. Haplotag, the novel GBS software described here, is freely available, and
operates with minimal user-investment on widely available computer platforms. Haplotag is unique in
fulfilling the following set of criteria: (1) operates without a reference genome; (2) can be used in a polyploid
species; (3) provides a discovery mode, and a production mode; (4) discovers polymorphisms based on a
model of tag-level haplotypes within sequenced tags; (5) reports SNPs as well as haplotype-based
genotypes; and (6) provides an intuitive visual “passport” for each inferred locus. Haplotag is optimized for
use in a self-pollinating plant species.
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Genotyping-by-sequencing (GBS: Elshire et al. 2011) and similar
methods [e.g., restriction-site associated DNA (RAD): Miller et al. 2007]
have become important strategies for whole genome genetic diver-
sity analysis and related studies in many plant and animal species.
The objective of these strategies is to resequence a representative
fraction of the genome of many individuals, and thereby determine the
genotypes of those individuals at loci where sequence variants exist.
Methods are based on high-throughput short-read sequencing of en-
zymatically constructed genomic complexity reductions, followed by
discovery of SNPswithin sequence tags.WhileGBS is powerful and eco-
nomical, it is also complex, requiring the barcoding and multiplexing

of samples, the deconvolution of large data files, the alignment of
short reads (tags), and the discovery and filtering of SNPs. The ap-
plication of GBS in large and complex genomes is especially chal-
lenging because of the confounding presence of multiple paralogous
loci (especially in polyploids), and, often, the absence of a complete
reference genome.

There are several available bioinformatics pipelines forGBS analysis,
including Stacks (Catchen et al. 2011), TASSEL (Glaubitz et al. 2014),
UNEAK (Lu et al. 2013), and other custom-designed pipelines (e.g.,
Sonah et al. 2013; Poland et al. 2012). Most pipelines require, or benefit
from, a reference genome, while UNEAK is designed specifically to
operate independently from a reference genome, and Stacks has the
ability to run with or without a reference genome. Stacks is a flexible
and integrative set of tools that produce many types of output, and
can be customized for many genetic scenarios. Stacks also provides
a unique web-based interface for inspection of results and quality
control; a feature that is useful in tuning the many parameters of
GBS analysis such that they produce results that are appropriate to
the genome and the genetic population. However, Stacks requires a
Unix-like computer environment, and a significant investment of
effort in building and maintaining a pipeline, and the web-based
interface requires a relational database and web server. Most other
GBS pipelines also require the installation of third-party programs
(e.g., to align sequences), while UNEAK requires only the installa-
tion of a JAVA run-time environment.

Toourknowledge,UNEAK, and the customized scripts describedby
Poland et al. (2012), are the only existing pipelines that will handle data
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from polyploids in the absence of a reference genome. Both pipelines
achieve this by using a population filter to reject SNPs that fail to
segregate with the expected genetic ratio in the population under anal-
ysis. Because UNEAK can be run on any computer platform with
adequate resources, it has been popular among researchers studying
species where no reference genome is available. However, the UNEAK
pipeline excludes all SNPs that belong to multi-locus series, SNPs from
tags containing multiple SNPs, or SNPs with more than two alleles. In
our experience with GBS in hexaploid oat (Huang et al. 2014), UNEAK
excluded at least 30% of potentially useful SNPs that were discovered
by an alternate customized pipeline. Furthermore, the developers of
UNEAK (personal communication) have indicated that no further de-
velopment of UNEAK will be performed.

With high-density genotyping comes the possibility to analyze data
based onhaplotypes, and the ability to imputemissing data (Swarts et al.
2014), which may be of particular importance in GBS analyses where
incomplete data are prevalent. Genome-wide association studies
(GWAS) based on haplotypes could also allow the discovery of cryptic
quantitative trait loci (QTL) associations that have eluded analysis
based on single SNPs (Lorenz et al. 2010). Because GBS data are
acquired from sequenced fragments that often containmultiple SNPs,
direct information about localized ‘tag-level’ haplotypes are available
within a GBS pipeline. However, to our knowledge, no GBS pipeline is
able to examine the segregation of haplotypes in the application of a
population filter, nor does any software provide a simple method to
access or examine haplotypes directly in an output file. Since accurate
haplotype inference normally requires a reference genome, the ability
to extract haplotypes directly from within GBS fragments could be of
particular interest in a species where no reference genome is available.

Our objective was to develop user-friendly GBS software that
operates with minimal user-investment on widely available computer
platforms. Additionally, we intended this software to meet the fol-
lowing requirements: (1) to operate without the requirement for a
reference genome; (2) to operate in a polyploid or duplicated genome,
distinguishing paralogous loci when an appropriate populationfilter is
available; (3) to provide a discovery mode, as well as an efficient
productionmode for scoring previously discovered loci; (4) to discover
polymorphisms based on models of segregating tag-level haplotypes
within GBS sequenced tags; (5) to report results in a variety of formats,
including SNP- and haplotype-based genotypes; and (6) to provide an
intuitive “passport” for each inferred locus, enabling visual inspection
and validation of discovered GBS loci.

MATERIALS AND METHODS
Software named ‘Haplotag’ was written in the Pascal programming
language, implemented as Free Pascal (http://freepascal.org/) within
the Lazarus programing environment (http://www.lazarus-ide.org/).
Both of these programming packages are open source, available on
multiple platforms, and actively supported by developer communities.
Most algorithms within Haplotag were written to operate in parallel
when executed on a computer with multiple processors. The code was
compiled for the Windows 64-bit environment (Microsoft, Redmond
WA), and tested with Windows XP, Windows 7, Windows 8, and
Windows 10, as well as server 2008. Haplotag was tested on many
different computers, but the evaluations reported below were executed
on a computer running Windows server 2008 with two Intel (Santa
Clara, CA) Xeon X5670 processors running at 2.93 GHz. Each pro-
cessor had six cores, and each core was divided into 12 threads (total
24 threads). The test machine contained 96 GB RAM, but all reported
analyses were confirmed to run within 24 GB RAM. All input and
output data resided on a locally attached 500 GB disk, since prior

experience indicated reduced performance when reading and writing
to a network drive. Small projects, as well as the demonstration files
described below, will run onmost ordinary desktop computers, but will
require a 64-bit operating system.

Haplotagwas evaluatedusing a set of small simulated demonstration
files, aswell as on the full set of primaryGBS reads fromoat described by
Huang et al. (2014). The latter data contained 894 taxa consisting of
360 diverse oat lines, and 534 mapping progeny from six biparental
populations. Both Haplotag and the UNEAK pipeline were run with
a minimummerged tag count of 50, which is higher than the threshold
used in earlier work due to subsequent optimization. Output from both
pipelines was filtered across the full population tomaintain markers for
which genotype calls were$ 50% or$ 80% complete, heterozygosity
was # 10%, and minor allele frequency was $ 5%. The error de-
tection threshold in UNEAK was set to 0.02. Additional filters for
Haplotag included a maximum base difference of three for aligning
tags, a maximum of nine tags per cluster, a maximum heterozygote
frequency on a haplotype basis of 0.25, and a maximum tolerance
for tri-zygotes and multi-zygotes of 1% and 0%, respectively.

Terminology
When referring to SNPs, we use the terms ‘SNP locus’ (a specific base
pair), and ‘SNP alleles’ (the variant bases found at a SNP locus). We
then define a ‘tag-level haplotype’ as the combined set of SNP alleles
that must exist on a single chromosome due to their recovery in the
sequence of a single GBS tag. Although the term haplotype implies the
existence of multiple loci, we essentially treat haplotypes as multiple
alleles at a single composite locus, which we refer to as a ‘Haplotag
locus’, and inferences are made under the assumption that the recom-
bination rate within a tag is negligible. The term ‘heterozygosity’ is used
when applying a filter that rejects an inference that two or more
haplotypes exist at the same Haplotag locus if those haplotypes occur
together more frequently than they would be expected to based on the
assumed heterozygosity in the population.

Data availability
Data analyzed in this report were deposited in the NCBI short read
archive (http://www.ncbi.nlm.nih.gov/sra/) under project accession
number SRP037730, and the GBS key for analysis was presented in
Table S4 of Huang et al. (2014). Supplemental files include: the
Haplotagmanual (Supporting Information, File S1), and sample output
(File S2 and File S3). Haplotag is available as an executable distribution
for recent versions of Windows 64-bit environments (XP, and versions
7 through 10). The distribution can be obtained from the site http://
haplotag.aowc.ca/, which provides a download links for a compressed
file that contains the Windows executable, a user manual (also in File
S1), and demonstration files. Future updates will be maintained at this
site, and a voluntary registration is provided to monitor interest in this
software, and to enable announcements regardingmajor revisions. The
Pascal source code was made available to reviewers of this work, and
will be provided by request on an as-is basis for any noncommercial use
based on an open source license. The source code is expected to be
compatible with any operating system where a Free Pascal compiler is
available, although minor modifications to the code may be required to
adapt it for the file systems of other operating environments.

RESULTS AND DISCUSSION

Software execution
The operation and function of Haplotag is described in the accompa-
nying manual (File S1), which references a set of small simulated input
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files for demonstration purposes. The input files are archived within
the software distribution. When extracted, the demonstration files fall
within three separate subdirectories, each containing a complete self-
contained set of demonstration files for one of three primary modes in
which Haplotag can operate. Within each subdirectory is a master
input file with the default name “HTinput.txt,” which contains all rel-
evant parameter specifications as well as a set of pipeline commands
that Haplotag will follow in the order listed. Based on these commands,
Haplotag can read and process data from three starting points (Figure
1), representing the three modes of operation.

There is currently a requirement to run part of the UNEAK GBS
pipeline prior to running Haplotag in order to deconvolute the raw
barcoded sequence data, produce a tag count file for each sample, and
write a merged tag count file for the entire project. The UNEAK
pipeline executes these steps very efficiently, thus the replacement of
this functionality was not a priority. The currentHaplotag distribution
provides a small helper utility to assist users in writing the UNEAK
script, and converting binary output to the text files required by
Haplotag. A standalone replacement for UNEAK is being developed,
which may allow the analysis of tags longer than 64 bp, but this tag

length is a current limitation of both UNEAK and the current version
of Haplotag. Sequencing data with short reads of 100 bp are ideal for
this type of analysis, since the barcode may occupy up to the first
10 bases, and this allows truncation of lower quality bases at the 39 end
of the read. Reads of longer than 100 bp can be analyzed, but the tags
will be truncated at 64 bases.

The cluster discovery mode (Figure 1A) is designed for applications
where complete de novo SNP discovery is required. This de novo clus-
tering step is multi-threaded, but it may still run slowly on very large
data sets. The haplotype discovery mode (Figure 1B) reduces the scale
of analysis by seeding the clusters with a set of predetermined tags. This
feature is useful for maintaining the legacy nomenclature of reference
sequences from prior GBS analyses. It could also be used to seed the
alignment of clusters using predicted fragments from a sequenced ge-
nome. Alternatively, this step could incorporate consensus sequences
from an alternate or more efficient clustering algorithm. The pro-
duction mode (Figure 1C) is designed for applications where SNPs
and haplotypes have already been discovered by Haplotag using a
large, diverse, and representative population, and where the objec-
tive is to genotype new samples while maintaining exactly the same

Figure 1 Flow chart showing input files (green), output files (blue), and dependencies (connecting lines) associated with ‘Haplotag’ GBS discovery
software. Default file names are shown in yellow, and are normally appended by “.txt” in the Windows file system. Three alternative pipelines (A,
B, and C) are available, with required input labeled for each. The cluster discovery pipeline (A), and the haplotype discovery pipeline (B), start by
aligning a complete inventory of tags (A), or a reduced inventory of tags from prior work (B), to produce clusters. In (B), the complete inventory is
then realigned against this template to increase the sampling of new haplotypes. A complete tag-by-taxa matrix of tag counts (HTBT) is then
formed for all tags belonging to clusters of two or more tags. Other output files are then created based on haplotype model fitting. In the
production pipeline, only the files labeled by (C) are required, since genotyping is based on counting copies of haplotype-tags in the output files
from previous discovery work.
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nomenclature of loci, haplotypes, and SNPs. No new haplotypes will be
discovered in production mode, so it is not recommended for an ap-
plication where the diversity of new taxa falls outside of the diversity
where the model was built.

What distinguishes Haplotag from other GBS pipelines is the
treatment of the tags as haplotypes, and the development of locus
models using a population filter to validate the diploid segregation of
these haplotypes. Prior to model discovery, tags are deliberately over-
aligned into clusters that potentially represent multiple paralogous loci.
Then, Haplotag tests every possible combination of haplotypes within
each cluster to identify mutually exclusive groups of haplotypes that
behave as single Haplotag loci. This model testing is based on a
population filter, which specifies threshold parameters for maxi-
mum heterozygosity, minimum, and maximum allele frequency, and
genotype-completeness (minimum proportion of nonmissing geno-
types). The result can be a single Haplotag locus within a single
cluster, ormultipleHaplotag loci within the same cluster. The latter is
common in polyploid or recently duplicated genomes. Results of
locus prediction and genotype scoring are summarized within a
single passport file for each cluster (see below). Although the model
selection within clusters does not incorporate sequence divergence,
the population filter invariably identifies Haplotag loci in which
haplotypes diverge lesswithin the locus than they do amongother loci
within the same cluster.

Software function, as illustrated by passport files
Another important and unique feature of Haplotag is the automated
production of a ‘passport’ file for each cluster. This is illustrated by one
passport from the analysis of the included demonstration data (Figure
2). Passport files are formatted in plain HTML, such that they can be
viewed in any web browser. They are indexed in a master HTML file
that can also be opened and searched in any browser. While these files
can be opened directly from a local disk, they could also be uploaded to
a website in order to provide external access to the results of an analysis.
Individual passport files can be inspected to determine if program
parameters are appropriate, or to explore the metadata and genotypes
of specific Haplotag loci. In our experience, these files also serve as
intuitive graphical presentations that can assist in explaining the GBS
concept and the program function to a lay audience.

For example, in Figure 2, we would first explain that the six se-
quences at the top (TagID 1–6) constitute all of the unique 64-base tags
from the experiment that formed a single cluster. Potential SNPs in this
cluster are highlighted, and counts of the number of taxa containing
each tag are shown at the left. We would then explain that the species
from which these tags are generated is polyploid, such that we suspect
these tagsmay come frommore than one locus.Wemight then click on
the “details of model” link (which would open File S2) to illustrate how
Haplotag has inspected all 57 possible combinations (“models”) of two
or more tags from the available six tags. This step is referred to as a
“population filter”, since it allows the exclusion of inappropriatemodels
based on whether the tags in a model segregate in a diploid manner
within the tested population. Parameters for population filtering, re-
ported at the bottom of the details page (File S2) include genotype-
completeness, allele frequency, and heterozygosity. Here, each model
was evaluated based on whether it would pass this filter (yes or no).
Next, the acceptable model having complete data for the greatest num-
ber of taxa (Model 42 in S2) was assigned as ‘Locus-1’. All models that
overlapped with Model 42 were then removed, and remaining accept-
able models were inspected. Of these, the next best model was assigned
to a Haplotag locus (in this case, Model 48 is assigned as ‘Locus-2’). The
above process is iterated indefinitely until no acceptablemodels remain.

We would then point out that ‘Haplotag Locus-2’ contains only one
SNP locus, and, thus, two haplotypes, while ‘Locus-1’ contains two
SNPs, which could theoretically form four haplotypes, of which three
haplotypes were observed. In practice, it is very rare to observe four
haplotypes at a single Haplotag locus with two SNP loci, as this would
imply two mutation events at the same SNP locus, or a rare recombi-
nation event between two SNP loci in the same tag.

We would then draw attention to the inferred genotypes and
segregation of these five combined haplotypes at two putative Haplotag
loci within the population of taxa, which are shown in the table at the
bottom of the passport (Figure 2). In this idealized example, the geno-
types of all 10 taxa are complete at both accepted Haplotag loci. The
numbers in each cell show the total counts of tags observed for each
taxon under each haplotype within a selected Haplotag locus. Those
with nonzero counts for two (or more) haplotypes (e.g., Taxa TJ, under
Locus 1) are scored as heterozygotes. These inferred genotypes are
written to a simple text-based file called “HTgenos.txt”. Since many
programs for genetic analysis cannot read haplotypes, an alternate ge-
notype file is written, where genotypes are defined by SNP locus calls
from within the Haplotag loci. In the example in Figure 2, three SNP
locus calls would be written, with ‘Locus-1’ being converted to two SNP
loci, identified by their SNP positions within the Haplotag loci. Nomen-
clature output files are also written, such that all dependencies are rep-
resented in a hierarchical naming system. These files are designed with
shared fields such that they could be easily loaded into a relational
database designed for this purpose.

Parameter selection
It is well known that results of SNP identification, especially in a poly-
ploid without a reference genome, are highly dependent on methods
and parameters (Huang et al. 2014). As with other methods for SNP
identification, there is no formal way to optimize the selection of model
parameters within Haplotag. However, parameters need to be selected
carefully, possibly using iterative testing, in order to obtain good results
and avoid artifacts. In our experience, the best results from Haplotag
are obtained when it is run across a large composite base population
consisting of a mixture of biparental populations and diverse taxa
representative of target germplasm. The biparental populations will
allow validation of Mendelian segregation and mapping of the poly-
morphisms, while the diversity samples will ensure discovery of alter-
nate haplotypes. The parameters used for the oat data presented below
were based on recursive optimization for this type of experiment. If
biparental populations are analyzed, then the minimum allele fre-
quency filter can be raised appropriately. If the analysis is restricted
to a single biparental population, then the filter could be set to achieve a
specific chi-square cut-off. Setting the maximum heterozygote fre-
quency to a low value is very useful to exclude non-Mendelian models,
but this can be applied effectively only within inbred lines where the
expected heterozygote frequency is significantly lower than 50%.

Evaluation of Haplotag using data from hexaploid oat
Data from 894 taxa reported by Huang et al. (2014) were reanalyzed to
compare performance and output of Haplotag to that of the UNEAK
pipeline. The first two steps of the UNEAK pipeline (production of tag
counts andmerged tag counts) were run to produce a common starting
point for both pipelines, requiring approximately 6 hr to run on the
test environment from the raw sequence files. The UNEAK pipeline is
not multi-threaded so the presence of 24 processors on this machine
was not relevant. The remaining steps in the UNEAK pipeline took
only 5 min. Data from both UNEAK and Haplotag were filtered and
formatted using the small helper-program “CbyT” described by Huang
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et al. (2014), which is now updated and provided in the current Haplotag
distribution. The use of CbyT allowed parameters in either pipeline to
be relaxed, such that data filtering could be tested at different levels
from the same output. The total count of SNP loci from the UNEAK
pipeline passing the population filter at a genotype-completeness
threshold of $ 50% was 12,780. At a threshold of $ 80%, the count
of filtered SNP loci was 4260 (Table 1).

Running on the same machine, but utilizing 23 processors, the full
Haplotag pipeline in cluster discovery mode took 6.9 hr in addition to
the 6 hr required by UNEAK. The cluster discovery step took most of
this execution time. After applying the same population filter, the
number of Haplotag loci was 29,421 with a genotype-completeness of
$ 50%, or 11,950 with a genotype-completeness of $ 80%. When
translated to SNP loci, the number of calls was 43,378 at $ 50%

Figure 2 Passport file produced by Haplotag from simulated demonstration files. Here, six tags (potential haplotypes) are identified at the top.
After model fitting by population-based filtering, two locus-models are selected. When Haplotag is run in ‘verbose’ mode, the details of model
selection are written in a separate file (see File S2). Locus-1 contains three haplotypes and Locus-2 contains two. SNP positions are identified by
color. The table at the bottom of the passport shows the tag counts at the presumed haplotypes within each locus. Counts greater than or equal
to one are shaded, indicating that they are scored as “present”.
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completeness or 17,117 at$ 80% completeness. The larger number of
SNP loci relative toHaplotag loci is due to the presence ofmultiple SNP
loci within some Haplotag loci.

In comparing the filtered SNP loci called by UNEAK to the SNP loci
called from Haplotag, 4204 (99%) of the 4260 UNEAK SNPs filtered at
$ 80% genotype-completeness were identical to those called by
Haplotag at the same filtering level. In contrast, UNEAK identified only
24% of the 17,117 Haplotag SNPs filtered at $ 80% genotype-
completeness. In general, Haplotag called most of the same SNP loci
discovered by UNEAK, because these represented the clusters in
Haplotag with exactly two haplotypes having only a single SNP
difference. The small number of UNEAK SNPs that were missed by
Haplotag are a result of rare haplotypes, and/or sequencing errors that
were aligned into a large cluster by Haplotag. In rare cases, this resulted
in a complex cluster that was excluded from the Haplotag project
because it exceeded the threshold for the maximum number of tags
per cluster. The UNEAK pipeline has a different network-based strat-
egy that is intended to exclude rare haplotypes because it is designed to
seek models with only two haplotypes and a single SNP. While it is
possible to adjust Haplotag parameters to increase the coverage of
UNEAK SNPs, this would be at the expense of a greater number of
multi-haplotype models that are called by Haplotag.

Haplotag was also tested in production mode, which required only
11 min in our test environment. As shown in Figure 1, production
mode uses loci and haplotypes discovered in a previous analysis to
reduce computation time and preserve an established nomenclature.
Whenwe used input files from the previously reported cluster-discovery
run, we achieved exactly the same results, as expected. Thus, to test a
different scenario, we used input files from an alternate analysis (not
reported), where Haplotag had been run in haplotype discovery mode.
In that analysis, clusters were built from the full set of SNP reference
sequences reported by Huang et al. (2014), as well as from additional
SNP reference sequences from subsequent work, encompassing a total
of 3327 taxa. We had used this strategy in order to preserve SNP
nomenclature used in prior published and submitted work. Here, we
wanted to test whether the haplotypes discovered using this large in-
ventory of reference sequences would provide similar results to those
achieved above usingHaplotag in cluster discoverymode. The results of
this analysis provided genotypes for 24,412 or 7343 Haplotag loci (at
$ 50% or$ 80% genotype-completeness, respectively), which trans-
lated to 31,685 and 8872 SNP loci, respectively (Table 1). Averaged
across filtering levels, this was a 33% reduction in called loci relative to
those from Haplotag in full cluster discovery mode. The disadvantage
of this strategy, which we have now demonstrated, is that the current
production files have not incorporated a large number of high quality
“new” SNPs that are discoverable only byHaplotag. This new result will
be considered in future GBS work in oat, and will require careful

addition of new clusters, loci, and haplotypes to the existing production
files, while still preserving the legacy nomenclature.

Each Haplotag run produces a complete index of passport files,
linking each Haplotag locus to a passport file for the cluster where that
locus was called. While this index is written in HTML format, it can be
easily manipulated into a table, which we have demonstrated in File S3.
This table provides links to the passport files for the 7343 Haplotag loci
called in the production mode and filtered at $ 80% genotype-
completeness. We have chosen this output because it contains legacy
SNPs and nomenclature (from Huang et al. 2014) to which we have
added known map positions. By loading all passport files to a web
server, they do not need to be downloaded and duplicated by users
of this resource. This strategy will be used in future to provide passports
and metadata for public GBS data sets loaded into the T3/Oat database
(https://triticeaetoolbox.org/oat/). Since passport files can also be saved
and opened without the need for a web server, an individual passport
file can be shared easily with a collaborator when there is an interest in
inspecting the sequence and genotypes of a specific Haplotag locus.

Limitations and future development
Haplotag was developed primarily to solve problems of genotyping in
self-pollinating allopolyploid species without a reference genome. It will
also function well in a self-pollinating diploid species.When paralogous
loci exist, such that they are aligned together within the same cluster,
Haplotag depends on a simple heterozygosity filter to build models of
Haplotag loci that exclude haplotypes from nonhomologous loci. Typ-
ically, this is very effective in self-pollinating populations where het-
erozygotes are rare and this filter can be set at a low level (typically
between 0.05 and 0.12). In populations where high rates of heterozy-
gosity are expected (in F2 populations, or in populations of outcrossing
species), a heterozygosity filter that was set higher (e.g., 0.65) could still
be effective in excluding nonsegregating haplotypes from paralogous
locus, but complications could arise if multiple paralogous loci are
segregating simultaneously. We initially considered the application of
a Fishers’ test of contingency tables, but extending this test to an arbi-
trary number of haplotypes was beyond our programing skills. In fu-
ture, we may consider adding additional population filters to expand
the genetic scenarios in which Haplotag can be used, and we welcome
suggestions in this regard.
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